Gut microbiota in the burying beetle, Nicrophorus vespilloides, provide colonization resistance against larval bacterial pathogens

نویسندگان

  • Yin Wang
  • Daniel E Rozen
چکیده

Carrion beetles, Nicrophorus vespilloides, are reared on decomposing carrion where larvae are exposed to high populations of carcass-derived bacteria. Larvae do not become colonized with these bacteria but instead are colonized with the gut microbiome of their parents, suggesting that bacteria in the beetle microbiome outcompete the carcass-derived species for larval colonization. Here, we test this hypothesis and quantify the fitness consequences of colonization with different bacterial symbionts. First, we show that beetles colonized by their endogenous microbiome produce heavier broods than those colonized with carcass-bacteria. Next, we show that bacteria from the endogenous microbiome, including Providencia rettgeri and Morganella morganii, are better colonizers of the beetle gut and can outcompete nonendogenous species, including Serratia marcescens and Escherichia coli, during in vivo competition. Finally, we find that Providencia and Morganella provide beetles with colonization resistance against Serratia and thereby reduce Serratia-induced larval mortality. This effect is eliminated in larvae first colonized by Serratia, suggesting that while competition within the larval gut is determined by priority effects, these effects are less important for Serratia-induced mortality. Our work suggests that an unappreciated benefit of parental care in N. vespilloides is the social transmission of the microbiome from parents to offspring.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The digestive and defensive basis of carcass utilization by the burying beetle and its microbiota

Insects that use ephemeral resources must rapidly digest nutrients and simultaneously protect them from competitors. Here we use burying beetles (Nicrophorus vespilloides), which feed their offspring on vertebrate carrion, to investigate the digestive and defensive basis of carrion utilization. We characterize gene expression and microbiota composition in the gut, anal secretions, and on carcas...

متن کامل

Privatization of a breeding resource by the burying beetle Nicrophorus vespilloides

15 It is still poorly understood how animal behaviour shapes bacterial communities and their evolution. 16 We use burying beetles, Nicrophorus vespilloides, to investigate how animal behaviour impacts the 17 assembly of bacterial communities. Burying beetles use small vertebrate carcasses as breeding 18 resources, which they roll into a ball, smear with antimicrobial exudates and bury. Using hi...

متن کامل

A limit on the extent to which increased egg size can compensate for a poor postnatal environment revealed experimentally in the burying beetle, Nicrophorus vespilloides

It is often assumed that there is a positive relationship between egg size and offspring fitness. However, recent studies have suggested that egg size has a greater effect on offspring fitness in low-quality environments than in high-quality environments. Such observations suggest that mothers may compensate for poor posthatching environments by increasing egg size. In this paper we test whethe...

متن کامل

Development and application of 14 microsatellite markers in the burying beetle Nicrophorus vespilloides reveals population genetic differentiation at local spatial scales

Burying beetles (genus Nicrophorus) are relatively rare among insects in providing sophisticated parental care. Consequently, they have become model species in research analysing social evolution, the evolution of parental care and mating systems. We used the recently published N. vespilloides genome and transcriptome to develop microsatellite markers. Specifically, we developed 14 polymorphic ...

متن کامل

Strategies for managing rival bacterial communities: Lessons from burying beetles

The role of bacteria in animal development, ecology and evolution is increasingly well understood, yet little is known of how animal behaviour affects bacterial communities. Animals that benefit from defending a key resource from microbial competitors are likely to evolve behaviours to control or manipulate the animal's associated external microbiota. We describe four possible mechanisms by whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2018